第225章 数学王冠上的明珠哥德巴赫猜想(第2页)
请退出浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。🎁黑料不打烊看片
1924年,德国的拉特马赫证明了‘7+7’。
1932年,英国的埃斯特曼证明了“6+6“。
1937年,意大利的蕾西先后证明了“5+7“,“4+9“,“3+15“和“2+366“。
1938年,苏连的布赫夕太勃证明了“5+5“。
194o年,苏联的布赫夕太勃证明了“4+4“。
1956年,华国的王元证明了“3+4“,稍后又证明了“3+3“和“2+3“。
1948年,匈牙利的瑞尼证明了“1+c“,其中c是一很大的自然数。
1962年,华国的潘承洞和苏联的巴尔巴恩证明了“1+5“,中国的王元证明了“1+4“。
1965年,苏联的布赫夕太勃和小维诺格拉多夫,及意大利的朋比利证明了“1+3“。
1966年,中国的陈景润证明了“1+2“。
这些便是通过殆素数取得的成绩。
例外集合,则是在数轴上取定大整数x,再从x往前看,寻找使得哥德巴赫猜想不成立的那些偶数,即例外偶数。
x之前所有例外偶数的个数记为e(x)。我们希望,无论x多大,x之前只有一个例外偶数,那就是2,即只有2使得猜想是错的。
这样一来,哥德巴赫猜想就等价于e(x)永远等于1。当然了,直到现在还不能证明e(x)=1;但是能够证明e(x)远比x小。在x前面的偶数个数大概是x2;如果当x趋于无穷大时,e(x)与x的比值趋于零,那就说明这些例外偶数密度是零,即哥德巴赫猜想对于几乎所有的偶数成立。这就是例外集合的思路。
维诺格拉多夫的三素数定理表于1937年。
在例外集合这一途径上,仅仅只是一年的时间过去,就同时出现了四个证明,其中包括华罗庚先生的著名定理。
如果偶数的哥德巴赫猜想正确,那么奇数的猜想也正确。
我们可以把这个问题反过来思考。
已知奇数n可以表成三个素数之和,假如又能证明这三个素数中有一个非常小,譬如说第一个素数可以总取3,那么我们也就证明了偶数的哥德巴赫猜想。
这个思想就促使潘承东先生在1959年,即他25岁时,研究有一个小素变数的三素数定理。这个小素变数不过n的o次方。我们的目标是要证明o可以取o,即这个小素变数有界,从而推出偶数的哥德巴赫猜想。潘承东先生先证明o可取14。后来的很长一段时间内,这方面的工作一直没有进展,直到1995年占涛教授把潘老师的定理推进到712o。这个数已经比较小了,但是仍然大于o。
哥德巴赫猜想证明的困难在于,任何能找到的素数,在以下式中都是不成立的。
2*3*5*7*。。。。。。*pn*p=pn+(2*3*5*7*。。。。。。*p-1)*pn前面的偶数减去任何一个素数pn的差必是合数。
所以,哪怕是眼下已经是高达LV7的数学等级,王东来一时间也没有多大的头绪进展。
怎么说,这个数学难题都存在了这么多年,要是那么容易地就能解决的话,恐怕早就被解决了。
不敢说全世界的所有数学学者都尝试过证明哥德巴赫猜想,但8o%以上的学者都尝试过,这个数据绝对不夸张。
各种各样的解题思路都被人尝试过,从筛法到例外集合,再到三素数等等。
虽然每隔一两年,都会有人大声嚷嚷自己证明了哥德巴赫猜想。
刚开始的时候,学术界还有一些兴趣,可是次数多了,就没人再去相信这些民科数学爱好者的话了。
甚至于,谁若是说出自己证明了哥德巴赫猜想,都会被人当成是一场笑话,被视为哗众取宠的小丑。
目前的数学界,已经达成了一种公式。
那就是哥德巴赫猜想如果被证明的话,那一定是运用了一种全新的数学方法。
所以,只要能够真正解开哥德巴赫猜想的数学家,就必然是一位伟大的数学家。
🎁黑料不打烊看片请退出浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。